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ABSTRACT

The synthesis of networks with minimum sensitivity to

element tolerances is studied from a computer viewpoint. The

theory of equivalent networks is used to generate a sequence

of networks whose transfer functions are identical to that of

a given network but whose elements differ from one network to

the next by an incremental amount. In the limit, differential

equations result whose solution at any value of the independent

variable give the elements of an equivalent network. Similarly,

differential equations for the sensitivity of the transfer func-

tion to changes in each of the elements are derived. The dif-

ferential equations in both cases are linear homogeneous with

the elements of the transformation matrix as the forcing func-

tions. With the aid of the exponential solution to the matrix

differential equation, digital computer solution even for com-

plex networks is very straightforward and rapid. As a measure

of the optimality of the network, the sum of the magnitudes

of the sensitivities is chosen as a performance criterion. The

method of steepest descent applied to this criterion leads to a

simple choice of the transformation parameters which is easily

implemented on the digital computer, thereby allowing efficient

synthesis of networks with minimum sensitivity to element toler-

ancee



The Synthesis of Minimum Sensitivity Networks

by

James D. Schoeffler f A.D. Waren

1. Introduction:

The advent of thin film and integrated circuit techniques

has changed some of the criteria by which networks are eval-

uated. In particular, the new techniques place less emphasis

on the number of elements in a network but require designs

which are fairly insensitive to changes in the element values,

due to the difficulty of maintaining tolerances at this stage

in the development of the thin film techniques. Several authors

have recently considered the design of insensitive networks
1- 4

from various viewpoints. In this paper, it is shown that the

theory of equivalent networks is very useful in the synthesis

of networks insensitive to large element tolerances.

Cauer in 1929 showed that by means of a congruence trans-

formation, one physically realizable network could be generated

from another in such a way that specified driving point and/or

transfer functions were held invariant.5'6 This approach to

network synthesis has been discussed by many authors and with

the exception of the minimum-inductance transformation in fil-

ter theory has not realized its apparent potentialities. 7 1 0

Useful results from this theory can be derived by using the

concept of continuously equivalent network theory together with

-1-
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a digital computer for implementation. In this paper, this

approach is used.

Given a network with the desired transfer function

(synthesized by any of the known schemes), the theory of equi-

valent networks is used to generate another network with the

same transfer function but with elements differing from those

of the original network by an incremental amount. In the limit,

differential equations result whose solution at any value of

the independent variable give the elements of an equivalent

network. In this wayp it is possible to generate many networks

equivalent to a given network but having widely differing ele-

ment values while insuring at all times that no elements be-

come negative. In addition, differential equations for the

sensitivities of the transfer function to changes in element

values are derived and an efficient computational algorithm

j derived which allows rapid realization of minimal sensitive

networks on a computer. In an example 30 element network, com-

puting times of several minutes were found.

2. Equivalent Network Theory:

Consider a network with n independent node-pairs. Such

a network is described by a set of n equations of the form

I - YoE 2.1



°--

where Y is the nxn admittance matrix of the network, B is

the nxl column matrix of node voltages and I is the nxl column

matrix of source currents. If this network is imbedded in a

2n-port rtwork of ideal transformers, there results another

n-port network and the variables of the original and new net-

work are related by a linear transformation:

E =AE'

It a Atl 2.2

where A is an nxn nonsingular constant matrix, t denotes trans-

pose, and E' and I' are the new voltage and current variables. 9

The last equation follows from the losslessness of the trans-

former network. The new variables are related by the equation

I' a Y'E' 2.3

where

Y' a AtY A 2.4

From the method of construction it is clear that the resulting

admittance matrix is physically realizable. The usefulness

stems from the possibility of interpreting Eq. 2.3 as the equi-

librium equations of an equivalent transformerless network.

In this case, not all elements will be positive in general and

this fact has limited the applications of the theory. I 0  By

proper choice of the transformation matrix A, certain driving

point and/or transfer functions can be held invariant. For
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example, if the kt h row of A is the kt h unit vector (all zeros

except for the kt h entry which is unity), the driving point

impedance at the kth terminal pair is invariant to the trans-

formation. If two rows are so chosen, the driving point

impedance at each port is invariant and also the transfer

impedance between the two ports. Thus it is possible to main-

tain desired transfer functions invariant to the transforma-

tion.
9

The theory becomes more useful if we imagine a trans-

formation from a given network to one whose elements differ

by only a small amount, and then pass to the limit. Let

A-U+BAx 2.5

Ibiji I E

where the elements of B are bounded, and x in an independent

variable. Consider the admittance matrix of the given net-

work as a function of the independent variable x, Y(x) so

that the given admittance matrix is Y(O) - Y0. Then apply-

ing this transformation yields a new matrix Y(x + Ax) given

by

Y(x * Ax) - Y(x) + BtY(x) + Y(x)BJ + BtY(x)B () 2

2.6

In the limit as Ax approaches zero, there results the matrix
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differential equation

dY BtY + YB

with initial conditions

Y(O) - Y 2.7

For any choice of B(x), the solution to this set of differ-

ential equations at any value of x gives a realizable admit-

tance matrix. In order to maintain some transfer functions

invariant, note from Eq. 2.5 that any row of A which is a

unit vector implies that the same row of B must be identically

zero. That is, equivalence at a port is assured if the row

of B corresponding to that port is zero. The problem of nega-

tive elements which plagues the usual formulation of the

equivalent network theory problem is easily surmounted here

because the elements of the admittance matrix change contin-

uously as a function of the independent variable x and the

transformation matrix B is also chosen continuously as a func-

tion of x, thereby allowing choices for B which keep elements

positive or zero.

The set of equations 2.7 really consist of 3n2 equations

since the nxn matrices contain n2 entries and the admittance

matrix is really the sum of a conductance matrix, a capacitance

matrix, and an inductance matrix. Since the node-to-datum set

of equations for an RLC network have symmetrical admittance
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matrices, only 3(n 2 + n)/2 of the equations are different.

The equations can be put into a more useful form for study

and numerical solution by considering the relation between

the admittance matrix and the elements of the network. The

entry in the ith row and jth column (i J) of the admittance

matrix of a node to datum set of variables is the negative of

the admittance connected between the i t h and jth nodes, and

each entry on the diagonal is merely the sum of all admit-

tance attached to the corresponding node. Hence it is possi-

ble to derive the elements of the network from the admittance

matrix (this assumes no mutual coupling between elements of

the network).

Hence it is possible to convert the differential equa-

tions into another set whose variables are the elements of the

network. For example, consider the RC network in Fig. 1 hav-

ing two independent mode-pairs. The matrix differential equa-

tion is

d -Bt+ YB 2.8

where

-g l +  92 
-1 1 +  

c2

and

B - b, b2] 2.10
B- Lb b 4
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This is the set of equations

g? + g 2(blgl * bg 2  b3g1)

- gj - - b1 gI + bsgI + bsg5 + b2 gI + b2g2 - b4gI

g' + g' - 2(b4g1 + b4g3 - b2g1)

c + c2 - 2(blc I + blc2 - b~cI )

- cj = - b1 c1 + bc 1  3 bc+ b2 c + b2c2 - b4 c1

Cj + CA =  2(b 4cl. + b4 c3 - b2c) 2.11

Here the prime denotes differentiation with respect to x and

it is important to note that each bi is in general an arbi-

trary (but bounded) function of x.

Note that this set can be put into the convenient form

of a first order matrix differential equation:

dG

C -ic 2.12

where

Gt " 1g1  g2  g3 3

c t - E. c 2  c53 2.13

and
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b1 + b4 - b2 -b b2  b 3

M - b1 - b4 + b2 - b 2b 2  b3

b 3 +b 4  - blb 2  b2  2b 4 + b3

2.14

In general, the differential equations for the elements of the

network will be of the form of Eqs. 2.12 where the matrix M

has elements which are linear combinations of the bi and are

arbitrary. Some of the bi will be fixed by the requirement

of invariance of a transfer function or the like. The remain-

ing bi are free and can be chosen to yield some optimal net-

work. Note that given B(x), Eqs. 2.12 are linear homogeneous

differential equations, and this greatly simplifies the cor-

putational problem.

In the general LC case, Eq. 2.12 would be modified by

the addition of an equation for L.

3. Sensitivity Equations:

Consider the network function T(a driving point or trans-

fer function). In general, T is a function of frequency and

can be considered a function of the elements in the network.

We are interested in determining how much the value of the

transfer function T at a frequency changes when the value of

one of the elements changes. To this end, define the sensiti-

vity of the transfer function T to changes in the kth element
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4
by the usual relation:

S a k3.1
k  Tk

If now the given network is subjected to an equivalence trans-

formation as described in the previous section, the elements

vary continuously with x but the transfer function, being in-

variant, remains constant. As the elements change values, the

sensitivity of T to changes in the elements also changes. Con-

sider the derivative of sensitivity with respect to the inde-

pendent variable x:

dSk b bSk dei
- 3.2i(T Z ei dx3.

where the summation is taken over all the elements of the net-

work, and ei denotes the ith element (R, L, or C).

By straightforward differentiation and noting that second

partial derivatives can be taken in either order, it is easy

to verify that

1 k 1 l 3
ek e i ei ek

Using Eq. 3.3 in Eq. 3.2 yields

dSk b ek 6S de i--Z 3.4
i.1 e i ek dx
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But the transfer function T is a function of the elements ei

and is independent of x. Hence

dT b de=i aT i - 0 o .5
dx 2)S (G5.

If Eq. 3.1 is rearranged as

bT .TSi13.i-= 3.6

i ei

Eq. 3.5 yields

b Si dei
T =o 3.7

Dividing Eq. 3.7 by T and taking the partial derivative with

respect to ek yields

b fe Si. Si lei ejSi lei

Rearranging Eq. 3.8 supplies the factor needed for Eq. 3.4

and noting that bei/aek is zero for i k and unity for i = k,

yields

b i- de b Sk dek

ei k dx i e k e 2c 9

3.9
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Substituting Eq. 3.9 into Eq. 3.4 yields a differential equa-

tion for the sensitivity:

dSk S k dek b ekSi b 3.10
d- ekdx i e

This equation simplifies considerably if an additional variable

qk related to Sk by

Sk - qk ek 3.11

is defined.

Then

dSk  de k-9 k M k M.1

With this change of variable, Eq. 3.10 simplifies to

dqk b de i

a iV- de 3.15
dx _ jl i N (kdx .

In section 2, the differential equations for the elements were

shown to be of the form

dx

dC -

dL MJ; ML 3.14
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dei

Hence in Eq. 3.13, if e i is a conductance for example, dx is

a function only of the conductances---there is no coupling

in Eqs. 3.14 between the various element-kinds. Hence unless
de 

i

is also a conductance, ( d- ) will be zero. That is,e k k

in Eq. 3.13, if ek is a conductance, only those values of i

corresponding to the conductances of the network appear and if

ek is a capacitance, only those values of i corresponding to

capacitances in the network will appear, etc. Hence the dif-

ferential equations for the sensitivities will be of a form

similar to Eqs. 3.14 above, in that the equations for one kind

of element will not involve the other element-kinds.

To display these equations succinctly, define SGk, SCk,

SLk the sensitivity of the kth conductance, kth capacitance,

and kth inductance respectively and similarly for qk' q k'

q k' Then Eq. 3.13 becomes

dq~k -Z ( dc

i k~
From i

From Eq. 3.14, it is clear that
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C9, 3.16

and

a ) - ± j 3.17

where ur is the rth unit vector. Hence the sensitivity equa-

tions for the conductances (the others are similar) simplify

as followst

d - Z Ejutmu 3.18
- " i J

utt 3.19

where " 2 .... 3.

The equations for all of the sensitivities in matrix form are

then simply

d% t% 3.21

The equations for the capacitance and inverse inductance

sensitivities are identical in form:

dQC M t
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dQL t
- 3.22

Thus, the equations for the sensitivities of the transmission

are merely the adjoint equations. The actual sensitivities

are then determined by Eq. 3.11. To summarize, six sets of

first order linear homogeneous differential equations for the

three element kinds (R, L, and C) and the sensitivities of the

transfer function of the network have been found such that

their solution--for each value of x--gives a set of elements

of an equivalent network, one having the same transfer function--

and also the sensitivity of that network to changes in each of

its elements. The given network and its sensitivities serve

as initial conditions for these differential equations. The

particular transfer function being held invariant is deter-

mined by the rows of the matrix B which are set equal to zero.

The matrix M is derived from B by the method discussed in sec-

tion 2. It is easy to formalize the whole procedure by adopt-

ing standard numbering schemes etc. in order to give formulae

for M in terms of B, but this adds nothing conceptually or

even practically and therefore no space is devoted to this

problem here.

There remains the problem of determining the network

equivalent to the given network with minimum sensitivity. This

is done in a straightforward manner by first defining a criterion.
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At any frequency, sensitivity may be complex, but only

the magnitude is of interest. Choose a criterion which is

essentially the sum of the magnitudes-squared of the sensi-

tivities of interest:

Z k qo k 3.23
2 k ck %k kg 5

where * indicates conjugate and where the summation is taken

over those k's of interest.

The method of steepest descent is most useful for mini-

mizing V. Usin'g Eq. 3.21 and 3.22, the derivative of V may

be written as

t QC- ( IB~j 3.24d x 1 C8

Here Ms is the symnetric part of M and the fact that M is

real is used to derive Eq. 3.24. Eq. 3.24 is pure real as

desired.

For steepest descent to the minimum, dV/dx should be as

negative as uossible. Thus the free bi which appear in M

should be chosen to make this so. But multiplying out Eq.

3.24 shows that dV/dx is linear in the b and since the ele-

ments of B were limited in magnitude to unity, dV/dx is mini-

mized if all of the b's take on plus or minus one, depending



-16-

upon the sign of its coefficient in Eq. 3.24. In the next sec-

tion, it is shown that this set of differential equations is

extremely easy to solve on a digital computer. In this case,

at each step of the solution, the machine merely chooses the

proper b's to make the descent toward the minimum as swift as

possible. The only constraint on the choice is that no ele-

ment go negative at any step. Since at each step the elements

change only slightly (in the numerical integration of a differ-

ential equation, small increments are always chosen), it is

easy to modify the computation so that the elements stay posi-

tive (because the changes in any single element are linearly

related to the b's by Eqs. 2.12).

The sensitivity equations give solutions at only a

single frequency and hence if it is desired to determine sensi-

tivities at more than one frequency, the equations must be sol-

ved at each frequency. This does not appreciably complicate

the computing because the only change in the differential equa-

tions is in the initial conditions and most of the computation

involves the matrix of coefficients M or - Mt which is indepen-

dent of frequency.

4. Computer Synthesis:

It has been shown in the previous sections that equiva-

lent networks may be generated from the solution of a set of

linear first order differential equations. In this section,
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an efficient computational procedure for the integration of

such equations, leading to efficient machine synthesis of

minimal sensitive networks is discussed.

Consider the vector differential equation

dV = AV 4.1

where V is an n x 1 matrix and A is an n x n matrix. It is well

known that the solution may be written in terms of a matrix

exponential 12

V(x) - eA V(O) 4.2

The matrix exponential is defined by the (absolutely and uni-

formly convergent) series1 2

a u+Ax + A2 x 2 + 1 g A .X + +.A + .

4.5

For machine solution, we are interested in solutions at x - 0,

Ax, 2Ax, 3Ax, 4Ax, .... where Ax is small. In this case, the

series above may be approximated by its first few terms be-

cause x is small. Thus the computer must form A, A 2 , and A3

if four terms are used and then form the weighted sum. Such

a calculation is well suited to computers, making the integra-
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tion process straightforward.

In the case of the problem at hand, the one set of

equations has matrix M and the other - Mt. Hence the matrix

exponentials which must be calculated are

Mx -Mtx
e and e

From Eq. 4.3, it is clear that the same matrices, M, M2 , and

M3 can be used for both calculations, the only difference in

the two computations being that the terms are added with pro-

per signs.

The computation proceeds with the following steps. First,

the values of the elements and sensitivities are used in Eq. 3.24

to determine the optimum b's for the next step. Second, the

matrices M, M2 , and M5 are formed. Third, e and e "Mi x are

formed. Fourth, the new elements and sensitivities are cal-

culated by multiplying the matrix exponentials by the present

element values and sensitivities as in Eq. 4.2. Fifth, the

elements are checked to determine if any has gone negative.

If so, the step is repeated with the choice of b's modified

so that the element which went negative remains zero or posi-

tive. Then the procedure is repeated until a minimum is

reached.

Although derived for RLC networks, the theory of equi-

valent networks is also valid for active networks with only
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slight modifications. As an example of this procedure, a

network containing two vacuum tubes and 30 RLC elements was

chosen. The parameters of the tubes were fixed and it was

desired to generate equivalent networks with the voltage trans-

fer function held invariant so that the voltage transfer func-

tion was minimally sensitive to the gains of the tubes. Because

the tube parameters were assumed fixed, the RIC formulation

derived in this paper is applicable.

Four discrete frequencies were chosen and the linear

combination of the sensitivities at these frequencies mini-

mized. Using a Burroughs 220 computer, several minutes of

comuting time led to a 25% decrease in sensitivity of this

network, and required only 6 steps. No attempt was made to

malm the program optimal and a more efficient program should

decrease this time still further. In any case, the computing

time for even complex networks does not limit the application

of this approach.
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